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ZNS SSDs enable higher performance and lower cost compared to 
conventional block-interface SSDs.

• No device-level garbage collection (GC)

• Coarse-grained flash translation layer

• Low flash capacity over-provisioning

ZNS-based storage software community is increasingly active!

• Shifting responsibilities for data placement from devices to host software

• Replacing host-level GC with uncontrollable device-level GC

• Filesystems: F2FS, BtrFS

• Databases: RocksDB, MySQL

Zoned Namespace (ZNS) SSD
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ZNS SSDs expose ZONE abstraction to storage applications.

• The logical block address space is divided into fixed-size zones.

Zoned Namespace (ZNS) SSD
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What is the ZONE?

• Random reads

• Append-only writes, no overwrites

• Erase as a whole 

• New writes must be appended after 
the write pointer (WP)
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Storage LBA range

Zone size

Written
blocks

Remaining
blocks

Append-only 
writes
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RAID: Redundant array of independent disks

Widely used in diverse domains

• Large-scale storage server in datacenters

• Disaggregated storage pool in cloud

Building RAID with ZNS SSDs for ZNS-based applications

1. High aggregated bandwidth

2. Fault tolerance

3. Zone abstraction 

When scaling, RAID comes...
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ZNS: Append-only writes in zones

A ZNS RAID write request needs:
1. read old parity
2. calculate new parity
3. update parity

new write

PPU: Partial parity updates

• When write request < chunk size,    
PPU happens in RAID.

• Long execution path

• In-place updating parity chunks

Storage workloads are dominated 
by small-sized write I/Os.

• 75% of writes < 16KiB in clouds

➢Low write performance in conv. RAID

➢More serious in ZNS RAID

Motivation: PPU v.s. ZNS
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In-place updates in PPU is incompatible with append-only semantic in ZNS.
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Batching and issuing I/Os at stripe granularity:
• ZapRAID [Apsys’23, TOS’24]

• High latency

• Lack of instant durability

• Degraded to PPU when fsync()

Allocating dedicated metadata zones for buffering PPUs:
• RAIZN [ASPLOS’23]

• Contention of multi-zone PPU aggregation

• RAID-level garbage collection

Existing solutions
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Allocating 1 metadata zone to buffer PPUs from other data zones

Issue 1: Contention of multi-zone PPU aggregation
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Bandwidth: Multiple data zones
v.s. One metadata zone

Throughput degradation:
Large-zone 19%      Small-zone 76%

Getting worse in small-zone ZNS RAID

• Large-zone: Striping across all channels

• Small-zone: Redirecting to 1 die
• Bandwidth isolation between zones

ZNS#0

ZNS#1

ZNS#2

…

…

…

Data zones Metadata zone

Logical zone#0

Append PPUs to metadata zone
Write data to multiple data zones

ZN
S 

co
n

tr
o

lle
r

NAND dies

channels

Large zone

Small zone

SSD internal architecture



RAID-level GC consumes write bandwidth in ZNS RAID.

Extra space overhead by PPUs:
• Each RAID write generates a PPU in metadata zones

Reclaim obsolete PPUs periodically!             RAID-level GC

Issue 2: RAID-level Garbage collection

8Throughput: 6.2% - 15%          P99 latency:  65%
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stripe

Observation
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Parity chunks will not be updated upon all the data blocks within the 
stripe have been written.
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Observation
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stripe

Observation
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Parity chunks will not be updated upon all the data blocks within the 
stripe have been written.

Behaving like a sliding window!
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An area in ZNS:

1. Overwrite support
• Processing PPUs in place

• Avoiding RAID-level GC

2. De-centralized architecture
• Private to each zone

• No bandwidth contention between zones

3. Sufficiently large size
• Holding parity chunks

What we want in ZNS RAID? 
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Included in NVMe specification

An area following WP

• Supporting overwrites

• Moving with data writing

Implementation:

• Exposing RAM-based write buffers 
in SSDs to applications

• Flushing data to flash when ZRWA 
moves
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Zone Random Write Area (ZRWA)
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Zone Random Write Area (ZRWA)
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ZRWA will move forward!

Included in NVMe specification

An area following WP

• Supporting overwrites

• Moving with data writing

Implementation:

• Exposing RAM-based write buffers 
in SSDs to applications

• Flushing data to flash when ZRWA 
moves
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Why ZRWA fits ZNS RAID?
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R1: Overwrite support for PPUs

R2: De-centralized architecture

R3: Sufficiently large size

ZNS RAID requirements ZRWA features

Limited overwrite support
Behaving like a sliding window

Each zone has a private ZRWA.
Isolated in write buffer 

ZRWA: 64KiB～1MiB per zone
Parity chunk size: ≤ 64 KiB

Perfect fit!



Idea: Holding parity chunks within ZRWA for in-place PPUs

ZRWA-enabled RAID: Zebra

Host side:

• Zone interface as a single device

• Logical zones

• Static L2P zone mappings 

• In-memory stripe cache

Device side:

• Physical zones with ZRWA on

• Diverse RAID setups (e.g., RAID-5/6)
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Problem: During the recovery, zones with ZRWA cannot accurately 
identify the finished write position before the failure.

• Failure: A sudden power-off event

Distinction of moving granularity:

• ZRWA moves at 16KiB～32KiB granularity  

• ZNS supports 1-LBA write (4KiB)

Challenge: Recovery from failure
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The flash page size of high-density NAND (MLC/TLC) 
is inconsistent with the write granularity of ZNS.

RAM-based
Write Buffers

Flash 
Blocks

Block#0 Block#1 Block#2 Block#3

Physical Data Placement in ZNS SSD
0 4 8 11

0-3

Flush at flash page granularity 



Real WP: Tail of successfully 
written data

Using out-of-band (OOB) area 
to record the data validity

• OOB: per-page area for metadata

• Filled with 0 at first

• Set to 1 when page is written

• Back to 0 upon zone reset

• Space consumption: 1 bit/page

Locating WP with Lightweight Metadata 
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Data consistency:  No write holes in stripes, written data must be consecutive

Parity consistency: Parity consistent with data

Recovery from a power-off event 
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Data consistency:  No write holes in stripes, written data must be consecutive

Parity consistency: Parity consistent with data

Step 1: Querying zone states

Step 2: Calculating Real WPs

• Physical zones Real WP

• Logical zone Real WP

Recovery from a power-off event 
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Data consistency:  No write holes in stripes, written data must be consecutive

Parity consistency: Parity consistent with data

Step 1: Querying zone states

Step 2: Calculating Real WPs

• Physical zones Real WP

• Logical zone Real WP

Step 3: Synchronizing data & parity

• Overwriting new parity with ZRWA

Recovery from a power-off event 

16

ZNS#2

ZNS#0

ZNS#1

ZNS#3

Power off

written data D Data P Parity Real WP

…

…

…

…

D0

D1

D2

P P’

New parity

Logical Zone#0



Testbeds:
• Large-zone ZNS: (3+1) RAID-5 composed of 4 Western Digital ZN540 

• Small-zone ZNS: (6+1) RAID-5 emulated by 7 ZNS SSDs via NVMeVirt

Micro Benchmarks:
• Read / Write / Mixed traces

• Real-world workloads: YCSB / TPC-C / SNIA traces

Application Benchmarks:
• RocksDB with db_bench

Peer system:
• RAIZN [ASPLOS’23]

Evaluation overview
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• Sequential & random read workloads: similar throughput

• Sequential write workloads: 4KiB / 8KiB / 16KiB

Read & write performance
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Large-zone ZNS SSD arrays:
6%-51% throughput

Small-zone ZNS SSD arrays:
3.3X-4.2X throughput



• Read-write-mixed workloads: varying write ratios

• Real-world traces: 
• captured from real applications, replaying on ZNS RAID systems

Performance under mixed & real-world traces
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2.2X write throughput
under mixed workloads

2.1X write throughput
under real-world workloads

Better results under workloads 
with small-sized I/Os



• Building RocksDB on ZNS RAID

• fillsync workload with db_bench

Application benchmarks
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Small-zone ZNSLarge-zone ZNS

1.3X throughput   on large-zone SSDs     4.9X throughput    on small-zone SSDs



• Recovery latency from a power-off event

• Zebra avoids the process of reading metadata zones during the recovery.

Recovery performance
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14.2X recovery acceleration on Zebra



• Problem
• Low write performance of RAID systems based on ZNS SSDs

• In-place updates in PPU is incompatible with append-only semantic in ZNS.

• Observation
• Processing PPUs behaves like a sliding window, a natural fit for ZRWA feature.

• Key idea
• Holding parity chunks within ZRWA for in-place PPUs

• Techniques
• Zebra: a novel architecture of ZNS RAID enabled by ZRWA

• Lightweight metadata management to locate WPs with OOB

• Recovery process from a power-off event

Conclusions
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