
Zebra: Efficient Redundant Array of Zoned Namespace
SSDs Enabled by Zone Random Write Area (ZRWA)

Tianyang Jiang1, Guangyan Zhang2, Xiaojian Liao3, Yuqi Zhou4

1Huawei Technologies 2Tsinghua University

3Beihang University 4China University of Geosciences

ZNS SSDs enable higher performance and lower cost compared to
conventional block-interface SSDs.

• No device-level garbage collection (GC)

• Coarse-grained flash translation layer

• Low flash capacity over-provisioning

ZNS-based storage software community is increasingly active!

• Shifting responsibilities for data placement from devices to host software

• Replacing host-level GC with uncontrollable device-level GC

• Filesystems: F2FS, BtrFS

• Databases: RocksDB, MySQL

Zoned Namespace (ZNS) SSD

2

Western Digital Samsung DapuStor

ZNS SSDs expose ZONE abstraction to storage applications.

• The logical block address space is divided into fixed-size zones.

Zoned Namespace (ZNS) SSD

3

What is the ZONE?

• Random reads

• Append-only writes, no overwrites

• Erase as a whole

• New writes must be appended after
the write pointer (WP)

Zone#0 Zone#1 Zone#2 …

Storage LBA range

Zone size

Written
blocks

Remaining
blocks

Append-only
writes

Write pointer (WP)

RAID: Redundant array of independent disks

Widely used in diverse domains

• Large-scale storage server in datacenters

• Disaggregated storage pool in cloud

Building RAID with ZNS SSDs for ZNS-based applications

1. High aggregated bandwidth

2. Fault tolerance

3. Zone abstraction

When scaling, RAID comes...

4

Banks Datacenters Clouds

ZNS: Append-only writes in zones

A ZNS RAID write request needs:
1. read old parity
2. calculate new parity
3. update parity

new write

PPU: Partial parity updates

• When write request < chunk size,
PPU happens in RAID.

• Long execution path

• In-place updating parity chunks

Storage workloads are dominated
by small-sized write I/Os.

• 75% of writes < 16KiB in clouds

➢Low write performance in conv. RAID

➢More serious in ZNS RAID

Motivation: PPU v.s. ZNS

5

In-place updates in PPU is incompatible with append-only semantic in ZNS.

ZNS#2

ZNS#1

ZNS#0
read

Stripe

1
Zone 0

update

2

3

Zone 0

Zone 0

Logical zone 0

D

D

D

D

data

parity

D

D

Batching and issuing I/Os at stripe granularity:
• ZapRAID [Apsys’23, TOS’24]

• High latency

• Lack of instant durability

• Degraded to PPU when fsync()

Allocating dedicated metadata zones for buffering PPUs:
• RAIZN [ASPLOS’23]

• Contention of multi-zone PPU aggregation

• RAID-level garbage collection

Existing solutions

6

Allocating 1 metadata zone to buffer PPUs from other data zones

Issue 1: Contention of multi-zone PPU aggregation

7

Bandwidth: Multiple data zones
v.s. One metadata zone

Throughput degradation:
Large-zone 19% Small-zone 76%

Getting worse in small-zone ZNS RAID

• Large-zone: Striping across all channels

• Small-zone: Redirecting to 1 die
• Bandwidth isolation between zones

ZNS#0

ZNS#1

ZNS#2

…

…

…

Data zones Metadata zone

Logical zone#0

Append PPUs to metadata zone
Write data to multiple data zones

ZN
S

co
n

tr
o

lle
r

NAND dies

channels

Large zone

Small zone

SSD internal architecture

RAID-level GC consumes write bandwidth in ZNS RAID.

Extra space overhead by PPUs:
• Each RAID write generates a PPU in metadata zones

Reclaim obsolete PPUs periodically! RAID-level GC

Issue 2: RAID-level Garbage collection

8Throughput: 6.2% - 15% P99 latency: 65%

Data
Zone#0

Metadata Zone

D0

GC

Append parity

Write
data

D1

D2

Stripe#0

P0 P1 P2

P0 P1 P2

P2

Data
Zone#1

Data
Zone#2

0 12 16

160

160 4

(unit: LBA)

0 12 28 40

After
finishing
writing
Stripe#0

0 4 16

RAID write

D1

D1

P1

P1

stripe

Observation

9

Parity chunks will not be updated upon all the data blocks within the
stripe have been written.

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11

Logical Block Address

Data

Parity

Append-only writes

P0 P1
P2 P3

stripe stripe stripe

Parity updates

stripe

Observation

9

Parity chunks will not be updated upon all the data blocks within the
stripe have been written.

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11

Logical Block Address

Data

Parity

Append-only writes

P0 P1
P2 P3

stripe stripe stripe

Parity updates

stripe

Observation

9

Parity chunks will not be updated upon all the data blocks within the
stripe have been written.

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11Data

Parity

Append-only writes

P0 P1
P2 P3

stripe stripe stripe

Logical Block Address

Parity updates

stripe

Observation

9

Parity chunks will not be updated upon all the data blocks within the
stripe have been written.

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11Data

Parity

Append-only writes

P0 P1
P2 P3

stripe stripe stripe

Logical Block Address

Parity updates

stripe

Observation

9

Parity chunks will not be updated upon all the data blocks within the
stripe have been written.

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11Data

Parity

Append-only writes

P0 P1
P2 P3

stripe stripe stripe

Logical Block Address

Parity updates

stripe

Observation

9

Parity chunks will not be updated upon all the data blocks within the
stripe have been written.

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11Data

Parity

Append-only writes

P0 P1
P2 P3

stripe stripe stripe

Logical Block Address

Parity updates

stripe

Observation

9

Parity chunks will not be updated upon all the data blocks within the
stripe have been written.

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11Data

Parity

Append-only writes

P0 P1
P2 P3

stripe stripe stripe

Logical Block Address

Parity updates

stripe

Observation

9

Parity chunks will not be updated upon all the data blocks within the
stripe have been written.

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11Data

Parity

Append-only writes

P0 P1
P2 P3

stripe stripe stripe

Logical Block Address

Parity updates

stripe

Observation

9

Parity chunks will not be updated upon all the data blocks within the
stripe have been written.

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11Data

Parity

Append-only writes

P0 P1
P2 P3

stripe stripe stripe

Logical Block Address

Parity updates

stripe

Observation

9

Parity chunks will not be updated upon all the data blocks within the
stripe have been written.

Behaving like a sliding window!

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11Data

Parity

Append-only writes

P0 P1
P2 P3

stripe stripe stripe

Logical Block Address

Parity updates

An area in ZNS:

1. Overwrite support
• Processing PPUs in place

• Avoiding RAID-level GC

2. De-centralized architecture
• Private to each zone

• No bandwidth contention between zones

3. Sufficiently large size
• Holding parity chunks

What we want in ZNS RAID?

10

Included in NVMe specification

An area following WP

• Supporting overwrites

• Moving with data writing

Implementation:

• Exposing RAM-based write buffers
in SSDs to applications

• Flushing data to flash when ZRWA
moves

Zone Random Write Area (ZRWA)

Immutable LBAs ZRWAUnwritten LBAs Write Pointer

0 4 8 12

Zone#0 Zone#1 Zone#2 …

…

Logical Block Address

RAM-based
Write Buffers

Flash
Blocks

Block#0 Block#1 Block#2 Block#3

Physical Data Placement in ZNS SSD
0 4 8

Write at
LBA#0

ZRWA does not move

11

Zone Random Write Area (ZRWA)

Immutable LBAs ZRWAUnwritten LBAs Write Pointer

0 4 8 12

Zone#0 Zone#1 Zone#2 …

…

Logical Block Address

RAM-based
Write Buffers

Flash
Blocks

Block#0 Block#1 Block#2 Block#3

Physical Data Placement in ZNS SSD
0 4 8

Write at
LBA#11

Included in NVMe specification

An area following WP

• Supporting overwrites

• Moving with data writing

Implementation:

• Exposing RAM-based write buffers
in SSDs to applications

• Flushing data to flash when ZRWA
moves

11

Zone Random Write Area (ZRWA)

Immutable LBAs ZRWAUnwritten LBAs Write Pointer

Zone#0 Zone#1 Zone#2 …

Logical Block Address

RAM-based
Write Buffers

Flash
Blocks

Block#0 Block#1 Block#2 Block#3

Physical Data Placement in ZNS SSD

Write at
LBA#11

0 4 8 12

0 4 8 11

0-3
Flush to Flash 1

2 Write LBA#11

…

ZRWA will move forward!

Included in NVMe specification

An area following WP

• Supporting overwrites

• Moving with data writing

Implementation:

• Exposing RAM-based write buffers
in SSDs to applications

• Flushing data to flash when ZRWA
moves

11

Why ZRWA fits ZNS RAID?

12

R1: Overwrite support for PPUs

R2: De-centralized architecture

R3: Sufficiently large size

ZNS RAID requirements ZRWA features

Limited overwrite support
Behaving like a sliding window

Each zone has a private ZRWA.
Isolated in write buffer

ZRWA: 64KiB～1MiB per zone
Parity chunk size: ≤ 64 KiB

Perfect fit!

Idea: Holding parity chunks within ZRWA for in-place PPUs

ZRWA-enabled RAID: Zebra

Host side:

• Zone interface as a single device

• Logical zones

• Static L2P zone mappings

• In-memory stripe cache

Device side:

• Physical zones with ZRWA on

• Diverse RAID setups (e.g., RAID-5/6)

D Data Chunk P Parity Chunk ZRWA

ZNS-based Applications (e.g., F2FS, RocksDB)

Logical Zone #0

D0 D1 D2 D3
…

Logical Zone #N

…

Zone interface (append-only writes)

In-Memory Stripe Cache

D2 D3 P1
…

ZNS#2

ZNS#0

ZNS#1

Logical Zone#0

Physical
Zone#0

Physical
Zone#0

Physical
Zone#0

...

...

...

Host

Device

stripe

Logical Zone#N

Physical
Zone#N

Physical
Zone#N

Physical
Zone#N

...

...

...

…

P0 D2

D3

P1

D0

D1

13

Problem: During the recovery, zones with ZRWA cannot accurately
identify the finished write position before the failure.

• Failure: A sudden power-off event

Distinction of moving granularity:

• ZRWA moves at 16KiB～32KiB granularity

• ZNS supports 1-LBA write (4KiB)

Challenge: Recovery from failure

14

The flash page size of high-density NAND (MLC/TLC)
is inconsistent with the write granularity of ZNS.

RAM-based
Write Buffers

Flash
Blocks

Block#0 Block#1 Block#2 Block#3

Physical Data Placement in ZNS SSD
0 4 8 11

0-3

Flush at flash page granularity

Real WP: Tail of successfully
written data

Using out-of-band (OOB) area
to record the data validity

• OOB: per-page area for metadata

• Filled with 0 at first

• Set to 1 when page is written

• Back to 0 upon zone reset

• Space consumption: 1 bit/page

Locating WP with Lightweight Metadata

15

Data consistency: No write holes in stripes, written data must be consecutive

Parity consistency: Parity consistent with data

Recovery from a power-off event

16

ZNS#2

ZNS#0

ZNS#1

ZNS#3

Power off

D0

D1

D2

P

written data D Data P Parity Real WP

Logical Zone#0

…

…

…

…

Data consistency: No write holes in stripes, written data must be consecutive

Parity consistency: Parity consistent with data

Step 1: Querying zone states

Step 2: Calculating Real WPs

• Physical zones Real WP

• Logical zone Real WP

Recovery from a power-off event

16

ZNS#2

ZNS#0

ZNS#1

ZNS#3

Power off

written data D Data P Parity Real WP

…

…

…

…

D0

D1

D2

P

Write hole

Logical
zone WP

Logical Zone#0

Data consistency: No write holes in stripes, written data must be consecutive

Parity consistency: Parity consistent with data

Step 1: Querying zone states

Step 2: Calculating Real WPs

• Physical zones Real WP

• Logical zone Real WP

Step 3: Synchronizing data & parity

• Overwriting new parity with ZRWA

Recovery from a power-off event

16

ZNS#2

ZNS#0

ZNS#1

ZNS#3

Power off

written data D Data P Parity Real WP

…

…

…

…

D0

D1

D2

P P’

New parity

Logical Zone#0

Testbeds:
• Large-zone ZNS: (3+1) RAID-5 composed of 4 Western Digital ZN540

• Small-zone ZNS: (6+1) RAID-5 emulated by 7 ZNS SSDs via NVMeVirt

Micro Benchmarks:
• Read / Write / Mixed traces

• Real-world workloads: YCSB / TPC-C / SNIA traces

Application Benchmarks:
• RocksDB with db_bench

Peer system:
• RAIZN [ASPLOS’23]

Evaluation overview

17

• Sequential & random read workloads: similar throughput

• Sequential write workloads: 4KiB / 8KiB / 16KiB

Read & write performance

18

Large-zone ZNS SSD arrays:
6%-51% throughput

Small-zone ZNS SSD arrays:
3.3X-4.2X throughput

• Read-write-mixed workloads: varying write ratios

• Real-world traces:
• captured from real applications, replaying on ZNS RAID systems

Performance under mixed & real-world traces

19
2.2X write throughput
under mixed workloads

2.1X write throughput
under real-world workloads

Better results under workloads
with small-sized I/Os

• Building RocksDB on ZNS RAID

• fillsync workload with db_bench

Application benchmarks

20

Small-zone ZNSLarge-zone ZNS

1.3X throughput on large-zone SSDs 4.9X throughput on small-zone SSDs

• Recovery latency from a power-off event

• Zebra avoids the process of reading metadata zones during the recovery.

Recovery performance

21

14.2X recovery acceleration on Zebra

• Problem
• Low write performance of RAID systems based on ZNS SSDs

• In-place updates in PPU is incompatible with append-only semantic in ZNS.

• Observation
• Processing PPUs behaves like a sliding window, a natural fit for ZRWA feature.

• Key idea
• Holding parity chunks within ZRWA for in-place PPUs

• Techniques
• Zebra: a novel architecture of ZNS RAID enabled by ZRWA

• Lightweight metadata management to locate WPs with OOB

• Recovery process from a power-off event

Conclusions

22

	幻灯片 1: Zebra: Efficient Redundant Array of Zoned Namespace SSDs Enabled by Zone Random Write Area (ZRWA)
	幻灯片 2
	幻灯片 3
	幻灯片 4
	幻灯片 5
	幻灯片 6
	幻灯片 7
	幻灯片 8
	幻灯片 9
	幻灯片 10
	幻灯片 11
	幻灯片 12
	幻灯片 13
	幻灯片 14
	幻灯片 15
	幻灯片 16
	幻灯片 17
	幻灯片 18
	幻灯片 19
	幻灯片 20
	幻灯片 21
	幻灯片 22
	幻灯片 23
	幻灯片 24
	幻灯片 25
	幻灯片 26
	幻灯片 27
	幻灯片 28
	幻灯片 29
	幻灯片 30
	幻灯片 31
	幻灯片 32
	幻灯片 33
	幻灯片 34
	幻灯片 35

